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A Current Loop Model for the
Fast Simulation of Ferrofluids

Han Shao, Libo Huang, and Dominik L. Michels

Abstract—Ferrofluids are oil-based liquids containing magnetic particles that interact with magnetic fields without solidifying. Leveraging
the exploration of new applications of these promising materials (such as in optics, medicine and engineering) requires high fidelity
modeling and simulation capabilities in order to accurately explore ferrofluids in silico. While recent work addressed the macroscopic
simulation of large-scale ferrofluids using smoothed-particle hydrodynamics (SPH), such simulations are computationally expensive.
In their work, the Kelvin force model has been used to calculate interactions between different SPH particles. The application of this
model results in a force pointing outwards with respect to the fluid surface causing significant levitation problems. This drawback limits
the application of more advanced and efficient SPH frameworks such as divergence-free SPH (DFSPH) or implicit incompressible
SPH (IISPH). In this contribution, we propose a current loop magnetic force model which enables the fast macroscopic simulation of
ferrofluids. Our new force model results in a force term pointing inwards allowing for more stable and fast simulations of ferrofluids using
DFSPH and IISPH.

Index Terms—Computational Electromagnetics, Divergence-free SPH (DFSPH), Ferrofluids, Fluid Mechanics, Implicit Incompressible
SPH (IISPH), Large-scale Simulations, Magnetic Fluids, Maxwell’s Equations, Natural Phenomena, Navier-Stokes Equations, Numerical
Simulations, Smoothed Particle Hydrodynamics (SPH).
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1 INTRODUCTION

THE simulation of complex natural phenomena is an
active topic of research in several scientific communities

ranging from computational physics to visual computing.
At least since Terzopoulos et al.’s pioneering work [1]
on elastically deformable models presented at SIGGRAPH
1987, physically-based simulation is also at the core of the
computer graphics community. Twelve years later, Stam [2]
presented his seminal work on stable fluids establishing
fluid dynamics research in computer graphics. Since then
graphics researchers have managed to continuously push
the boundaries in fluid simulation such as realistically sim-
ulating water [3] and smoke [4] as well as fluid flow around
objects [5]. Recent contributions, e.g., address fluid phenom-
ena such as bubble rings [6] and waves on a vast ocean [7],
and even complex natural phenomena such as storms [8],
several weather effects [9], and wildfires [10]. In 2007, Brid-
son and Müller-Fischer [11] gave an influential course at
SIGGRAPH providing a practical introduction to fluid sim-
ulation for graphics enabling the audience to animate fully
three-dimensional incompressible flow. Significant research
effort has been devoted to enable accurate and efficient
fluid simulation. Among others, the powerful particle-based
(Lagrangian) smoothed particle hydrodynamics (SPH) tech-
nique has been introduced to the graphics community for
simulating fluids by Müller-Fischer et al. [12]. Previously,
Desbrun and Gascuel [13] already simulated highly de-
formable bodies using SPH. Koschier et al. [14] later pub-
lished an excellent Eurographics tutorial focusing on state-
of-the-art fluid simulations based on SPH. Moreover, several
grid-based (Eulerian) approaches [15] became popular as
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well as hybrid Lagrangian-Eulerian approaches such as
the fluid-implicit-particle (FLIP) method [16]. Aiming for
more realism, researchers have incorporated several phys-
ical models, e.g., for surface tension [17], viscosity [18], [19],
and turbulent effects [20] into their fluid solvers.

Inspired by the interesting behavior and practical rele-
vance of so-called ferrofluids (i.e. oil-based liquids which
contain magnetic particles), the graphics community has
recently addressed their simulation focusing at the macro-
scopic scale. In the absence of an external magnetic field,
these materials behave like regular Newtonian fluids. Once
a magnetic field is applied, interesting complex patterns are
generated showing characteristic spikes oriented according
to the field lines of the external magnetic field. Covering
the underlying physics and – at the same time – handling
the complicated underlying surface geometry fits the skill-
set of the computer graphics community quite well. Huang
et al. [21] from this community have been the first to
address the first-principle-based macroscopic simulation of
ferrofluids. Huang et al. utilized the SPH methodology
and incorporated the appropriate handling of the electro-
magnetic effects. Later, Huang and Michels [22] devised a
boundary element method for the simulation of ferrofluids
and Ni et al. [23] introduced a level-set method for magnetic
Substance Simulation. These contributions aim for facilitat-
ing the exploration of new applications of these promising
materials such as in optics, medicine and engineering by
providing modeling and simulation capabilities in order
to accurately explore ferrofluids in silico. In the context
of electromagnetism, graphics researchers have previously
worked, e.g., on magnetic rigid bodies addressing magnets
in motion [24] and magnetization dynamics for magnetic ob-
ject interactions [25]. While Huang et al. have proposed an
approach for the macroscopic simulation of ferrofluids, their
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Kelvin magnetic force model leads to an outward-pointing
magnetic force, which would levitate the particles around
the fluid surface and leads to an unphysical surface shape.
In terms of SPH framework, Huang et al. have utilized the
weakly compressible SPH (WCSPH) in contrast to state-
of-the-art SPH methodology such as divergence-free SPH
(DFSPH [26]) or implicit incompressible SPH (IISPH [27]).
Compared to DFSPH and IISPH that only penalize fluid
compression, WCSPH also penalizes fluid expansion which
happens on the surface of previous ferrofluid simulations
using the Kelvin force model. This could alleviate the
levitation problem mentioned above. However, significant
instabilities are observed when using WCSPH with large
temporal time steps resulting in low performance. In this
contribution we aim to overcome this limitation by introduc-
ing a new magnetic force model enabling the fast simulation
of ferrofluids. Our so-called current loop magnetic force
model results in a force term pointing inwards on the fluid
surface, which exempts the requirement to penalize fluid
expansion, and thus can be well integrated with DFSPH
and IISPH. A large temporal step size can be used in our
simulations without instability issues. Moreover, we utilize
a better linear solver for the computation of the magnetic
field. We demonstrate the capabilities of our new approach
by presenting various numerical experiments and a compar-
ison to Huang et al.’s previous model.

2 RELATED WORK

In the following, we discuss related work on fluid dynamics
followed by previous work on ferrofluids published within
the computer graphics community. We would like to point
out that the simulation of ferrofluids is also an active topic of
research in different scientific communities [28]. However,
macroscopic simulations of ferrofluids covering a variety
of visually recognizable aspects can almost exclusively be
found within computer graphics research.

2.1 Fluid Simulation

In general, there are two popular types of approaches in
fluid dynamics based on Eulerian and Lagrangian repre-
sentations. Following the Eulerian way, the fluid flow is
represented by a velocity field. The flow velocity is given
by u(x, t) defined at a certain position x on a grid at time
t. In contrast, following the Lagrangian way, particles are
introduced representing individual fluid elements with a
flow velocity u(i, t) attached to each particle i. It is relatively
easy to discretize the underlying differential equations using
the Eulerian approach. However, dealing with meshes –
especially with larger shape variations or topology changes
– introduces a significant complexity overhead. Within
the graphics community, Lagrangian approaches such as
SPH [12] and hybrid approaches such as FLIP [16] are
popular choices.

SPH utilizes kernels to estimate the physical quantities
at the particle positions. The corresponding governing equa-
tions are discretized with respect to each particle. The first
work on SPH dates back to 1977 [29], [30] focusing on
problems in astronomy before Desbrun and Gascuel [13],
and Müller-Fischer et al. [12] made SPH popular in graphics.

To deal with incompressibility, weakly compressible SPH
(WCSPH [31], [32]) utilizes stiff equations of state (EOS) re-
garding pressure and density. To ensure stability and avoid
oscillations, the CFL condition must be satisfied and thus a
small time step is required in conjunction with explicit time
integration, which would greatly increase the computational
cost. Solenthaler et al. proposed predictive-corrective incom-
pressible SPH (PCISPH [33]) which achieves incompress-
ibility while allowing for larger time steps. With superior
scaling properties, implicit incompressible SPH (IISPH [27])
achieves speedups over PCISPH. Divergence-free SPH (DF-
SPH [26]) further enforces the incompressibility on both
position and velocity levels. This ensures realistic behavior
and results in a stability increase. For boundary handling,
Akinci et al. [34] proposed a two-way coupling approach.
Adami et al. [35] developed a wall model which prevents
particle penetrations based on a local force balance. Koschier
et al. [36] used a density map to avoid the sampling of
boundary particles. Bender et al. [37] further developed
volume maps to reduce computation time and memory
requirements. Regarding surface tension, ghost SPH [38]
has been proposed to deal with surface tension dispersions.
Akinci et al. [39] proposed a surface tension and adhesion
force model which can handle large surface tension. He et
al. [40] proposed a surface tension model based on a free
surface energy functional. Zorilla et al. [17] accelerated the
computation of surface tension by classifying the particle
and Monte Carlo integration.

The early work of hybrid Lagrangian-Eulerian ap-
proaches dates back to the particle-in-cell (PIC) ap-
proach [41]. To address the problem of large numerical dis-
sipation using PIC, the fluid-implicit-particle (FLIP) method
was developed by Brackbill et al. [42]. Within the graph-
ics community, FLIP was introduced by Zhu et al. [16].
Batty et al. [43] proposed an efficient and robust method
to handle the irregular boundary geometry. Ng et al. [44]
further improved the fluid–solid coupling at the boundaries
which converges in the L∞-norm. Boyd et al. [45] developed
a multi-phase FLIP method for accurate surface tension
simulation. Ferstl et al. [46] introduced narrow band FLIP
to reduce particle counts and computation time.

2.2 Ferrofluids

Early research results on ferrofluids can be found within the
physics community [47], [48]. Several contributions focused
on their simulation [49], [50], [51], [52] covering properties
such as the formation of spikes. However, these simula-
tions cannot handle complex dynamics. Instead, the process
towards the equilibrium state is simulated. Liu et al. [53]
simulated ferrofluid droplets and Zhu et al. [54] utilized a
level-set method for the simulation of ferrofluids.

Within the graphics community, Ishikawa et al. [55], [56]
used SPH to simulate ferrofluids as particles. However, the
spiky fluid surface is generated by procedural modeling.
Huang et al. [21] have been the first who devised an SPH ap-
proach to the qualitatively accurate simulation of large-scale
ferrofluids based on physical principles. In contrast to previ-
ous work, the characteristic spike patterns of ferrofluids are
generated in a physical meaningful way without a priori
knowledge of the spike pattern. The Kelvin force model is
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employed and incorporated into the SPH fluid solver. Later,
Ni et al. [23] utilized a level-set method to simulate magnetic
substances. In their work, the magnetic force is modeled as
the interfacial Helmholtz force drawn from the Minkowski
form of the Maxwell stress tensor. Huang and Michels [22]
devised a surface-only approach which uses a boundary
element method to solve the magnetization problem and
compute the magnetic pressure for force evaluation. Sun
et al. [57] utilized the material point method to simulate
nonlinearly magnetized materials.

On a different trajectory, the simulation of magnetic rigid
bodies has also been addressed in the graphics commu-
nity. In this regard, Thomaszewski et al. [24] simulated
the rigid magnet by calculating the interaction between the
subdivided magnetic dipole and the external field. Kim et
al. [25] improved the simulation based on magnetization
dynamics which enabled the incorporation of mutual in-
ductance and remanent magnetization. Kim and Han [58]
further increased the stability and enabled the simulation of
magnets with arbitrary shape.

3 METHODOLOGY

In this section, we will introduce our novel approach. First,
the general information of our fluid solver will be discussed.
This includes the control equations, the SPH framework
DFSPH [26], the viscosity force and the surface tension
force models, and the boundary handling. After that, the
computation of the magnetic field is discussed which is
mainly a recap of previous work from Huang et al. [21]. This
is followed by the introduction of our novel current loop
force model. We derive its new formulation and illustrate
how this leads to more stable simulations of ferrofluids.

3.1 Fluid Solver
The temporal evolution of the fluid’s state can be simu-
lated by solving the Navier-Stokes equations. Incompress-
ible fluid is described by the continuity equation,

∇ · v = 0 , (1)

and the momentum equation,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + fext , (2)

in which the density is denoted by ρ, the pressure by p, the
viscosity coefficient by µ, and fext represents the external
net force which usually contains the magnetic forces as well
as gravity and surface tension. Please note, that the vector
Laplacian is similarly defined as its scalar counterpart and
simply acts component-wise.

SPH model discretizes the fluid domain using a set of
particles. A physical quantity A at position ri is approx-
imated by summation of its neighbouring values Aj at
position rj :

A(ri) = Σj
mj

ρj
AjWij , (3)

in which Wij = W (ri − rj) and W (r) refer to a kernel
function [30].

The density is estimated by

ρi = ΣjmjWij , (4)

which is a weighted summation of the particle masses. Since
the mass is equally distributed among the particles and
a constant value, the continuity equation (1) is naturally
satisfied. The left hand side of the momentum equation (2)
can be re-written into a material derivative form ρDv/Dt.
In a SPH framework, pressure and viscosity are modeled as
forces acting on the particles. Following a certain particle i,
we have the control equation

ρiai = ρi
Dvi
Dt

= fi , (5)

with the force

fi = ρg + f
pressure
i + f

viscosity
i + f surface

i + f
magnetic
i , (6)

while g denotes the gravity.
In a standard SPH [12] or WCSPH framework [31], the

pressure force is computed using the equation of state.
However, to ensure incompressibility, high stiffness is re-
quired which limits the step size used for the numerical
integration. In IISPH [27] and DFSPH [26], iterative methods
are proposed to ensure incompressibility while maintaining
a large time step size. In IISPH, the pressure is computed
iteratively by solving a linear system. In DFSPH, a constant
density solver is used to eliminate the density error and a
divergence-free solver is used to ensure the divergence-free
velocity field.

In our work, we utilize both IISPH and DFSPH for com-
parison experiments and mainly use the DFSPH framework
to conduct numerical experiments. Algorithm 1 gives an
overview of DFSPH. Please note, that α is a factor which
is depending on the particle positions. For details about
the constant density solver and the divergence-free solver,
please refer to Bender et al. [26].

ALGORITHM 1: DFSPH Framework.
while (t < tmax) do

for i← 1 to N do
compute non-pressure force acceleration
aadv
i ← g + (f

viscosity
i + f surface

i + f
magnetic
i )/mi

for i← 1 to N do
v∗i ← vi + ∆taadv

i

correctDensityError(α,v∗) //Bender et al. [26]
for i← 1 to N do

xt+∆t
i ← xt

i + ∆tv∗i
for i← 1 to N do

compute density ρt+∆t
i

compute factor αt+∆t
i

correctDivergenceError(α,v∗) //Bender et al. [26]
update velocity v← v∗

The standard viscosity force is modeled as f
viscosity
i =

ν∇2vi which requires the SPH discretization of the Lapla-
cian operator:

∇2vi = Σj
mj

ρj
vj∇2Wij . (7)

However, the use of second derivatives is problematic be-
cause they cannot capture the differences of physical quan-
tities and lead to noise. We employ the viscosity model from
Weiler et al. [18] which uses a combination of first derivative
and finite differences

∇2vi = 2(d+ 2)Σj
mj

ρj

(vi − vj) · (ri − rj)

|ri − rj |+ 10−2 h2
∇Wij , (8)
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with dimension number d. Please note, that the 10−2 h2 term
in the denominator is used to avoid the singularity.

We follow the work of Akinci et al. [39] to model surface
tension. In their work, both the cohesion effect between
particles and the surface area minimization are addressed:

f surface
i = Σj

2ρ0
ρi + ρj

(
f cohesion
i←j + f curvature

i←j

)
. (9)

The cohesion term is given by

f cohesion
i←j = −σmimjC (|ri − rj |)

ri − rj
|ri − rj |

, (10)

in which σ denotes the surface tension coefficient and C
denotes a spline function. The surface minimization term is
given by

f curvature
i←j = −σmi(ni − nj) , (11)

in which ni provides normal information avoiding the
explicit computation of the curvature which would require
second-order derivatives. ni and nj are not normalized such
that they are close to zero inside the fluid domain, which
leads to a surface tension force close to zero. We refer the
readers to Akinci et al. [39] for more discussions about the
surface tension model.

For boundary handling, we follow the work of Bender et
al. [37] which precomputes a volume map. The volume map
provides an implicit boundary representation. It utilizes the
narrow band data structure to store the information and
query values at run-time.

3.2 Magnetic Field

Following the previous section, the remaining work towards
the simulation of ferrofluids is a proper magnetic force
model. The first step is to calculate the magnetization when
an external magnetic field is imposed on the fluid particles.
This part mainly follows the work from Huang et al. [21].

The magnetic field is usually described by the magnetic
flux density B and the magnetic field strength H. The
relationship between these quantities is given by

B = µ0(H + M) , (12)

where the magnetization vector field is denoted by M
and vacuum permeability is denoted by µ0. Please note,
that M(r) is a field vector which describes the magnetic
moment’s density at location r. In our ferrofluid simulation,
each fluid particle is naively equated to a tiny magnet, thus
the magnetic moment m is used to describe the magnetic
strength of a single particle. In the SPH framework, the
relationship between the magnetization vector field M and
the particle magnetic moment mi is given by

M(r) = ΣimiW (r− ri, h) , (13)

where the kernel function is denoted by W (r− ri, h).
Under a certain external magnetic field Hext, the fer-

rofluid will be magnetized with magnetic moment mi for
each particle to be determined. These magnetized particles
would generate a magnetic field Hferro. Thus

H = Hferro + Hext ,

B = µ0 (Hext + Hferro + M) . (14)

According to Maxwell’s equation, the magnetic flux den-
sity B is divergence-free:

∇ ·B = ∇ · (Hext + Hferro + M) = 0 , (15)

and ∇ ·Hext = 0 outside the external magnet .
Following the work of Huang et al. [21], Hferro is curl-

free and it can be represented with Hferro = −∇φ, where φ
is a scalar function. Putting this back into Eq. (15), we end
up with a Poisson equation

∇2φ = ∇ ·M , (16)
φ|∞ = 0 . (17)

Omitting the derivation, we directly use the solution to
the Poisson’s equation above from Huang et al. [21]:

Hferro(r,mi) =(r̂ ·mi)(Wavr(r)−W (r))r̂

− Wavr(r)

3
mi . (18)

This equation describes the magnetic field at position r
generated by a single ferrofluid particle centered at r = 0
with magnetic moment mi, where r = |r|, r̂ = r/r, and
Wavr(r) is the averaged kernel value contained within a ball
of radius r:

Wavr(r) =

(
4π

3
r3
)∫ r

0
4πξ2W (ξ) dξ . (19)

The magnetic field generated by the ferrofluid is a sum-
mation of contributions from individual particles:

Hferro(r) = ΣiHferro(r− ri,mi) . (20)

Substituting Eq. (13) and Eq. (20) into Eq. (14) regarding
each particle position ri, we obtain

B(ri)

µ0
=Hext(ri) + Σj(Hferro(ri − rj ,mj)

+ mjW (ri − rj , h)) . (21)

The above equation contains two unknowns B(ri) and
mi. To deal with this, we will use the approximation

mi = VM(ri), (22)

with volume V = dx3. Please note, that the particles are
initially positioned on a uniform grid with spacing dx.
Moreover, the constitutive relation is given by

M = χH , (23)

where χ is the magnetic susceptibility, which describes the
level of magnetization of a substance in response to an
imposed magnetic field. Combining Eq. (12), Eq. (22) and
Eq. (23), we obtain a linear relationship between B(ri) and
mi:

mi = V
χ

χ+ 1

B(ri)

µ0
. (24)

Substituting this back into Eq. (21), we obtain a linear system

G

(
V

χ

1 + χ
bi

)
− bi = −Hext(ri) , (25)

where bi = B(ri)/µ0 corresponds to the magnetic flux
density at particle position ri, and G = Hferro + M is
the summation operator in Eq. (21) regarding the particle
magnetic moment mi.
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At each time step, the particle position ri and the exter-
nal field Hext(ri) are given. We solve Eq. (25) for bi and use
Eq. (24) to get the particle magnetic moment mi.

In the previous work of Huang et al. [21], Eq. (25) is
solved using least squares conjugate gradient. However,
we found that a standard conjugate gradient method is
sufficient.

3.3 Current Loop Force Model
After the magnetization process, the magnetic moments are
usually aligned with the magnetic field, so that we can
ignore the torque and only consider the force imposed on
the ferrofluid particle.

According to the theoretical work of Byrne [47], there are
multiple magnetic force models, and in the work of Huang
et at. [21] the Kelvin force model is adopted with

FKelvin = µ0(M · ∇)H , (26)

where (A · ∇)B = (∂Bi/∂xj)Aj .
In this work, we use another magnetic force model: a

current loop model with the following formulation:

FCL = (∇B) ·M = µ0(∇H) ·M + µ0(∇M) ·M , (27)

where (∇B)·A = Ai (∂Bi/∂xj). If both, A and B, are given
as column vectors, then (∇B) ·A = (∇B)TA which returns
a column vector resulting from multiplying a matrix with a
column vector.

According to Byrne [47], the first term µ0(∇H) ·M in
Eq. (27) is equivalent to the Kelvin force model of Eq. (26).
Define FM = µ0(∇M) ·M, then Eq. (27) can be rewritten as

FCL = FKelvin + FM . (28)

Hence, our current loop force model is the result of adding
a bulk term to the Kelvin force model. The Kelvin model
and the current loop model have different force densities,
but when combined with corresponding surface traction
discontinuity, they have the same total pressure jump on
the surface induced by magnetic forces as explained in
the conclusion of Byrne [47]: “When [many classical theories
including Kelvin and current loop forces are] augmented by the
corresponding differential surface traction to account for boundary
layer forces, a unique formulation is obtained for the pressure rise
to a containing boundary, and a unique surface integral method
for total body force.” In the continuous form, the equilibrium
shape of a ferrofluid surface is determined by the pressure
discontinuity across the ferrofluid surface. This is analogous
to the different behavior of water and mercury in capillary
effects. The concave and convex shape of the liquid surface
in the thin tube has opposite capillary action, which is
decided by the pressure jump. The current loop model gives
an inward-pointing magnetic force which leads to more
stable simulation as we will show later.

In the discretized form, we first consider the magnetic
force from a source particle towards a target particle:

fs→t =

∫
FCLdr =

∫
FKelvindr +

∫
FMdr . (29)

The first integral is given by Huang et al. [21]∫
FKelvindr = µ0

∫
(Mt(r) · ∇)Hs(r)dr

= µ0

∫
W (r− rt, h)∇H(r− rs,ms)mtdr ,

(30)

where

∇H(r,m) =(I(rTm) + rmT + mrT)A(r)

+ r(rTm)
rT

|r|
A

′
(r) , (31)

A(r) =
Wavr(r)−W (r)

r2
, (32)

A
′
(r) =5

W (r)

r3
− 5

Wavr(r)

r3
− 1

r2
dW (r)

dr
. (33)

The second part on the right side of Eq. (29) is addressed
as follows:∫

FMdr = µ0

∫
(∇Ms(r)) ·Mt(r)dr

= µ0

∫
W (r− rt, h)∇M(r− rs,ms)

Tmtdr ,
(34)

where
∇M(r,ms)

T = W
′
(r, h)

r

|r|
mT
s , (35)

and in the above W
′
(r, h) is the derivative of the kernel

function W (r, h). Hence, we obtain∫
FMdr = µ0

∫
W (r−rt, h)W

′
(r−rs, h)

r− rs
|r− rs|

(mT
smt)dr .

(36)
This integration is over a spherical domain (|r−rt| < 2h)

around the target particle with radius 2h (the support of
the kernel function). Taking into account the symmetric
property, the integration result from Eq. (36) is a vector
parallel to (rt − rs).

When the two particles are aligned with respect to the
magnetic moment, (mT

smt) > 0. For kernel functions, we
usually have W (r, h) > 0 and W

′
(r, h) < 0, so the final

integration of Eq. (36) is a vector pointing in the opposite to
the direction of (rt − rs).

Huang et al. [21] argue that the current loop model
violates momentum conservation. Here, we prove that the
force of the source particle on a target is aligned with two
particle centers, and this would not lead to extra momentum
or angular momentum. Moreover, the force between two
particles would be attractive if their magnetic moments are
aligned in the same direction. On the surface of the fluid
domain, the attractive force from the inner part would drag
the surface particle back to the fluid domain, thus leading
to an inward-pointing magnetic force. As mentioned above,
this inward-pointing property enables the integration of the
magnetic force into a more advanced SPH framework such
as DFSPH and IISPH, which keeps a stable simulation of
ferrofluids with large temporal steps.

The kernel function W (r, h) = 0 if |r| > 2h. Now we
have two situations to further deal with the integration in
Eq. (30) and Eq. (36). When |rs− rt| > 4h, the non-zero part
of the kernel function would have no overlap, and in the
case |rs − rt| ≤ 4h, there are overlaps.

In the first case, |rs− rt| > 4h. Ms = msW (r− rs, h) =
0 in the spherical domain |r − rt| < 2h (please note, that
|r− rs| > 2h). According to Eq. (15), ∇ ·H = −∇ ·Ms = 0.
Thus H is harmonic in this domain(i.e., divergence-free and
curl-free). Using the mean-value property, we obtain∫

FKelvindr = µ0∇H(rt − rs,ms)mt , (37)
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and ∫
FMdr = 0 . (38)

Thus,
fs→t = µ0∇H(rt − rs,ms)mt . (39)

In the second case, |rs− rt| ≤ 4h, the integral in Eq. (29)
is first evaluated numerically for a series of relative positions
to form look-up curves. Later in the simulation, we use
these look-up curves for the fast integral evaluation. The
numerical integration is carried out in a coordinate system
where we put the source particle at (0, 0, 0) and the target
particle at (0, 0, qh). 0 ≤ q ≤ 4 is the normalized distance.
The rotation matrix is denoted by R, such that m = Rm̃
and m̃ = RTm, where the tilde sign “∼” indicates that the
variable is represented in local coordinates.

The third order tensor Λ̃αβγ below describes the bilinear
relationship of the current loop force in Eq. (29) with respect
to the source and target moments m̃s and m̃t.

f̃αs→t =
3∑

β=1

3∑
γ=1

Λ̃αβγ(|rt−rs|, h)m̃β
s m̃

γ
t , α ∈ {1, 2, 3} . (40)

The parameter α refers to the force component. β and γ refer
to the source particle and target particle magnetic moment
component direction. There are 27 entries in the third order
tensor. With numerical integration of Eq. (30) and Eq. (36),
we calculate the forces from the source to the target with
unit magnetic moments but with 3×3 = 9 different direction
combinations for a series of distances to obtain 27 curves.
However, following the work of Huang et al. [21], only 7
of them are non-zero and there are two types of curves
for the Kelvin model. In our new force model, the second
integration term

∫
FMdr in Eq. (36) is added. A necessary

condition for this integral to be non-zero is that (m̃T
s m̃t)

should be non-zero, so the terms only take effects when the
magnetic moment of two particles are aligned. Thus three
combinations Λ̃311,322,333 would be modified and lead to
three curves,

Λ̃113,223,131,232 = C1(q)h−4 , (41)

Λ̃333 = C2(q)h−4 , (42)

Λ̃311,322 = C3(q)h−4 . (43)

Each curve is fitted by a piece-wise fourth-order polyno-
mial:

C(q) = a4q
4 + a3q

3 + a2q
2 + a1q + a0 . (44)

The coefficients of C1, C2 and C3 in four intervals, 0 ≤ q <
1, 1 ≤ q < 2, 2 ≤ q < 3, and 3 ≤ q < 4 are given in Table 1,
Table 2, and Table 3 respectively.

Figure 1 illustrates these different curves. Two curves C2

and C3 have negative values when q < 2 resulting in an
attractive force.

After calculating the force in local coordinates, we trans-
form it back to global coordinates with fs→t = Rf̃s→t. For
the summed magnetic force on a certain particle, we obtain

fi,particle = Σjfj→i . (45)

Regarding the force from the external magnetic field, we
can easily compute ∇Hext(ri) and obtain

fi,ext = µ0∇Hext(ri)mi , (46)

TABLE 1: Polynomial coefficients of C1(q).
0 ≤ q < 1 1 ≤ q < 2 2 ≤ q < 3 3 ≤ q < 4

a4 9.978 · 10−9 −2.764 · 10−9 −1.096 · 10−9 3.799 · 10−10

a3 −2.979 · 10−8 2.869 · 10−8 9.770 · 10−9 −6.263 · 10−9

a2 2.389 · 10−9 −9.945 · 10−8 −2.547 · 10−8 3.947 · 10−8

a1 4.531 · 10−8 1.251 · 10−7 2.650 · 10−9 −1.135 · 10−7

a0 2.446 · 10−11 −2.370 · 10−8 5.007 · 10−8 1.274 · 10−7

TABLE 2: Polynomial coefficients of C2(q).
0 ≤ q < 1 1 ≤ q < 2 2 ≤ q < 3 3 ≤ q < 4

a4 −1.972 · 10−8 5.344 · 10−9 2.717 · 10−9 −8.005 · 10−10

a3 5.891 · 10−8 −5.650 · 10−8 −2.478 · 10−8 1.309 · 10−8

a2 −4.166 · 10−9 1.974 · 10−7 7.050 · 10−8 −8.192 · 10−8

a1 −9.085 · 10−8 −2.493 · 10−7 −3.759 · 10−8 2.340 · 10−7

a0 −2.796 · 10−11 4.727 · 10−8 −8.025 · 10−8 −2.609 · 10−7

TABLE 3: Polynomial coefficients of C3(q).
0 ≤ q < 1 1 ≤ q < 2 2 ≤ q < 3 3 ≤ q < 4

a4 −7.564 · 10−8 3.037 · 10−8 −5.353 · 10−10 −1.186 · 10−9

a3 1.885 · 10−7 −2.391 · 10−7 2.459 · 10−8 1.681 · 10−8

a2 −1.686 · 10−8 6.476 · 10−7 −1.872 · 10−7 −8.793 · 10−8

a1 −1.806 · 10−7 −6.487 · 10−7 5.155 · 10−7 1.987 · 10−7

a0 −7.180 · 10−11 1.252 · 10−7 −4.785 · 10−7 −1.593 · 10−7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
q

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

×10−7

C1
C2
C3
C ′
1

C ′
2
CM

Fig. 1: Illustration of the new curves C1, C2, C3 in our
current loop model, and the old curves C

′

1, C
′

2 from Huang
et al. [21]. CM corresponds to the extra term induced by the
second integration of Eq. (29).

and the total magnetic force given as

fi = fi,particle + fi,ext . (47)

Algorithm 2 provides a summary of the magnetic force
computation process and our force model fits well into the
DFSPH framework in Algorithm 1.

The force in our new model has an attractive direction
which is also illustrated in Figure 2. The external magnetic
field is constantly pointing upwards and used to magnetize
the particles in the box. The solution of the magnetic flux
density field is shown. The Kelvin model leads to the force
pointing outwards, and our current loop model leads to the
inward-pointing direction of the force which prevents the
levitation artifacts.
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ALGORITHM 2: Magnetic Force Computation.
Input: Positions r
Output: Magnetic force f

1 calculate Hext(ri)
2 solve the linear Eq. (25) using conjugate gradient
3 update mi based on Eq. (24)
4 for i← 1 to N do
5 fi ← 0, fi ∈ R3

6 for j ← 1 to N do
7 if |rt − rs| ≤ 4h then
8 calculate q ← |rj − ri|/h
9 calculate m̃j ← RTmj

10 compute force f̃j→i using Eq. (40)
11 fj→i ← Rf̃j→i

12 fi ← fi + fj→i

13 else |rt − rs| > 4h then
14 compute force fj→i using Eq. (39)
15 fi ← fi + fj→i

16 fi ← fi + fi,ext using Eq. (46)

Hext B

FK FCL

Fig. 2: Sketch of the external magnetic field strength, the
magnetic flux density, the corresponding Kelvin force, and
the current loop model force on each particle.

4 RESULTS

In this section, we present different numerical experiments
illustrating the effectiveness of our approach. First, a com-
parison of our current loop model to the Kelvin model
is presented. Then the effect of varying surface tension
and magnetic field strength is shown. The interaction of
the ferrofluid and a cubic magnet is shown in a rotating
magnet and in a moving magnet scene. Finally, the direct
contact behavior of a rigid magnet and the ferrofluid is
presented in a climbing fluid and in a fluid emitter scene.
Our improvement for solving the equations describing the
magnetic field is shown in the last part. Table 4 provides an
overview of the parameters used in our experiments.

4.1 Comparing Force Models
As illustrated in the previous section, and in Figure 1, 2, the
Kelvin force model results in a force pointing outwards with
respect to the fluid surface, while the current loop model
force points inwards. In the previous work of Huang et
al. [21], they use WCSPH, which enables negative pressure.
When the particle goes far away from the fluid surface,
the negative pressure will drag it back and leads to a
stable fluid surface, thus the particle levitation problem is
alleviated. However, the negative pressure is known to lead
to unnatural particle clustering [26] in density summation
based SPH. Adding Kelvin force into DFSPH and IISPH
model will lead to noisy particles levitation. Figure 3 shows
the comparison of the dynamic results of the two models at
different time steps for DFSPH and IISPH. We can clearly see
that, for both DFSPH and IISPH, the Kelvin model shows
very noisy particle levitation, while the current loop model
manages to maintain a stable fluid surface.

Please note, that in previous work of Huang et al. [21],
the time step size is set to be 3 · 10−5 s which is greatly
limited by the nature of WCSPH. While in DFSPH and
IISPH, the time step size is set to be 5 · 10−4 s, which
is 16-times larger than the previous one. Hence, our new
current loop model enables the fast and stable simulation of
ferrofluids.

4.2 Varying Surface Tension and Field Strength
We conduct an experiment with varying surface tension and
magnetic field strength. While the external magnetic field
mainly changes the amplitude of the spikes, the surface
tension mainly changes the width or pattern of the fluid’s
surface. Figure 4 shows the corresponding numerical result.
Along the horizontal axis, we change the surface tension co-
efficients. As we can see, the number of spikes gets smaller
when we have larger surface tension. Along the vertical
axis, we change the magnetic field strength. With larger
field strength, we can see an increase of the amplitude.
This observation shows that our model can reproduce this
property of ferrofluids.

4.3 Rotating Magnet
In the previous two experiments, the spikes are generated
under a magnetic field which is constant in space and time.
Here, we present a more complex interaction between the
ferrofluid and a rigid cube magnet. When the cube magnet
approaches the fluid, it will magnetize the fluid particles.
The spikes usually grow in the direction of magnetic field
lines. In Figure 5, the right side has a magnetic field in
the vertical direction, such that spikes grow in the vertical
direction. While on the left, the magnetic field direction is
parallel to the fluid bottom such that the spike will not grow
and just cluster together.

4.4 Moving Magnet
While the external static magnet can attract the fluid and
generate spikes, in this moving magnet experiment, we
further show the capability of our framework. In Figure 6,
an external rigid cube magnet is used to generate spikes on
the fluid’s surface. By slowly moving the external magnet
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Section Scene Particle Size (m) Susceptibility Surface Tension Time Step Size (s) Number of Particles Runtime (s)

4.1 Comparison 0.001 1.175 0.5 0.0005 52k 8.4
4.2 Surface Tension and Field Strength 0.001 1.175 {0.25, 0.5, 1} 0.001 35k 2.4
4.3 Rotating Magnet 0.001 1.175 0.5 0.0005 ∼ 0.001 32k 2.5
4.4 Moving Magnet 0.001 1.175 0.25 0.0005 ∼ 0.001 32k 2.8
4.5 Climbing Fluid 0.001 1.175 0.5 0.0005 ∼ 0.001 57k 6.9
4.6 Fluid Emitter 0.001 1.175 0.5 0.0001 ∼ 0.001 93k 43.7

TABLE 4: This table provides an overview of the experiments conducted in our work. The particle sizes are chosen
sufficiently small to capture the structure of the characteristic spikes. The susceptibility values is taken from Huang et
al. [21]. Using the surface tension model [39], we are choose values from 0.25 to 1 for the surface tension coefficients
resulting in proper spike shapes. Our SPH framework enables the adaptive time step from 1 · 10−4 s to 1 · 10−3 s. The
runtimes of our numerical experiments are evaluated with respect to a single frame. Please note, that we are exporting 200
frames per second.

DFSPH/Current Loop DFSPH/Kelvin IISPH/Current Loop IISPH/Kelvin

Fig. 3: The comparison experiments between the current loop model and Kelvin model are carried out for both DFSPH and
IISPH. The external magnetic field strength is set to be a constant value of 1.3 · 105 A/m along the vertical direction and
the surface tension coefficient is set to be 0.5. The box size is 0.06 m × 0.06 m × 0.015 m. The top two rows refer to the
results obtained after t = 0.05 s and the bottom two rows refer to the results obtained after t = 0.10 s. From left to right in
each row, the four subplots refer to DFSPH using the current loop model, DFSPH using the Kelvin model, IISPH using the
current loop model, and IISPH using the Kelvin model.
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Fig. 4: Illustration of varying surface tension along the
horizontal axis (0.25, 0.5, 1.0) and varying magnetic field
strength (1.2 · 105 A/m, 1.3 · 105 A/m, 1.4 · 105 A/m) along
the vertical axis. The box size is 0.05 m× 0.05 m× 0.015 m.

Fig. 5: Ferrofluids exposed to a rigid cube magnet with a
edge length of 4 cm. On the left side, the magnetic field
direction is parallel to the fluid bottom, while on the right
side the magnetic field direction is vertical pointing up and
perpendicular to the fluid bottom.

from left to right, the fluid follows the magnet. During the
pathway, it interacts with a non-magnetic cylinder. It splits
apart when hitting the cylinder and coalesces after leaving
it. Our work is able to capture the dynamical process.

4.5 Climbing Fluid

In this experiment, we show the direct interaction of the
ferrofluid and an external rigid magnet. This hemisphere
is magnetized by a cylindrical magnet located below. We
first emit fluid over the hemisphere with the magnetic force
turned off. After waiting a while with almost resting of
the fluid, the magnetic force is turned on. Figure 7 shows
the fluid shape before the magnetic force is turned on and
the steady state after the magnetic force turned on. In the
dynamic process, we can see that the fluid climbs over the
hemisphere and grows spikes upon it.

4.6 Fluid Emitter

In this complex scene, a cylinder is carved with helix
shape groove. Another cylindrical magnet below is used

Fig. 6: The time sequence of this experiment is shown in
an N-shape direction. The cube magnet leads to a magnetic
field direction along the vertical axis. The edge length of the
cube is 4 cm.

Fig. 7: Corresponding rest fluid shapes without (left) and
with (right) magnetic force. Please note, that there is another
cylindrical magnet located below which is used to magne-
tize the steel sphere.

to magnetize it. Right from the start of the simulation, the
ferrofluid is kept been emitted over the helix. The magnetic
strengths grows from zero to its maximum at t = 0.5 s.
Figure 8 shows the dynamical result of our method with the
rightmost figure showing the state at t = 3.5 s. Compared
to other cases above, a smaller time step is used. This is
due to the falling down of droplets as their large velocity
limits the time step to fulfill the Courant–Friedrichs–Lewy
condition. However, even at the lower boundary, we can
still use a time step about three times lager compared to
previous work. When the droplet falls off, it gets attracted
by the cylinder and spins along the helix curve down to
the bottom. Our framework is able to capture this complex
physical behavior.

4.7 Conjugated Gradient
In the work of Huang et al. [21], the magnetic equation is
solved by a least squares conjugate gradient solver. How-
ever, the linear system of equations for solving the magnetic
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Fig. 8: From left to right, we show the states of the fluid at a time evolving sequence. Please note, that there is another
cylindrical magnet located below which is used to magnetize the helix carved cylinder.

0 25 50 75 100 125 150 175 200
Iteration Number
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10−1
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Fig. 9: The residual norm between our newly implemented
solver compared to the previous one of Huang et al. [21].
The blue curve corresponds to the new conjugate gradient
solver while the orange curve corresponds to the least
squares conjugate gradient solver [21]. Here, we are solving
for the magnetic field of a sphere with radius of 2 cm. The
susceptibility is set to be 500.

equation is symmetric. Hence, we can use the standard
conjugate gradient solver. Least squares conjugate gradient
solves a normal equation, whose condition number is much
larger than the original equation, thus it converges slower.
In Figure 9, we present the residual of the two methods. The
performance of a standard conjugate gradient is better than
we expected. While the least squares conjugate gradient
solver could be used in the non-linear magnetization case,
standard conjugate gradient turned out to be sufficient in
our work when the susceptibility is constant in each scene
corresponding to the linear magnetization problem.

5 CONCLUSION

In our work, we propose a novel magnetic force model.
Compared to previous work, our new model avoids the
problem of particle levitation, and thus can be nicely in-
corporated into summation based SPH frameworks, such
as IISPH and DFSPH. Compared to WCSPH, our new
framework enables a time step about ten times larger.

Although the surface tension model from Akinci et
al. [39] enables us to generate proper spike shapes, it
does not provide physically accurate surface tension coef-
ficients. To match the exact physical behavior of ferrofluids
in a quantitative sense, a more sophisticated surface ten-
sion model is required. The Kelvin force model and the
current loop force model should theoretically lead to the

same surface shape for incompressible ferrofluids, however,
their behaviors are slightly different in the particle-based
discretized form. The inward-pointing current loop force
around the fluid surface tends to smooth the shape of the
spikes.

Our framework can also be extended with the fast mul-
tipole method for a faster calculation of the magnetic force.
However, this is orthogonal to our contrition which is why
we did not explore this path in our current work. In our
work and Huang et al. [21], SPH is used as the fluid solver.
In future work a hybrid Eulerian-Lagrangian fluid solver,
such as FLIP, can serve as the backbone of the ferrofluid
simulation. The solid-liquid coupling of ferrofluids is also
an interesting topic to explore.

ACKNOWLEDGMENTS

The authors would like to thank Jan Bender for publishing
the DFSPH framework open-source. This work was sup-
ported and funded by KAUST through the baseline funding
of the Computational Sciences Group within the Visual
Computing Center.

REFERENCES

[1] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
deformable models,” vol. 21, 07 1987.

[2] J. Stam, “Stable fluids,” Proc. of ACM SIGGRAPH, pp. 121–128,
1999.

[3] M. Kass and G. Miller, “Rapid, stable fluid dynamics for computer
graphics,” in Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’90. New York,
NY, USA: Association for Computing Machinery, 1990, p. 49–57.

[4] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of
smoke,” in Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’01. New York,
NY, USA: Association for Computing Machinery, 2001, p. 15–22.

[5] N. Foster and R. Fedkiw, “Practical animation of liquids,” in
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 23–30.
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